## Supplementary information II Time-Independent Perturbation Theory & WKB Approximation



## Part I

## Time-Independent Perturbation Theory



#### Solving Problems Perturbatively

- For most realistic problems, the full Hamiltonian cannot be solved exactly.
- However, sometimes we can separate the full Hamiltonian into two parts

$$\hat{H} = \hat{H}_0 + \hat{H}'$$

where the unperturbed Hamiltonian has known solutions  $E_n^{(0)}$ and  $|\phi_n^{(0)}\rangle$ 

$$\hat{H}_0 |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(0)}\rangle$$

- If the "perturbation" Hamiltonian  $\hat{H}'$  is small in some sense compared to  $\hat{H}_0$ , it only causes small corrections to  $|\phi_n^{(0)}\rangle$  and  $E_n^{(0)}$ .
- In this section, we study the case when  $\hat{H}'$  is time-independent and try to construct approximate solutions to  $\hat{H} = \hat{H}_0 + \hat{H}'$ .



#### Expressing the Problem in Powers of the Perturbation

- We rewrite  $\hat{H}$  as  $\hat{H} = \hat{H}_0 + \lambda \hat{H}'$ , where  $\lambda$  is a dimensionless parameter by which we tune the magnitude of the perturbation and keep track of different perturbation terms
- In general the **exact** solutions to  $\hat{H}$  can be written as

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$$
$$|\phi_n\rangle = |\phi_n^{(0)}\rangle + \lambda |\phi_n^{(1)}\rangle + \lambda^2 |\phi_n^{(2)}\rangle + \dots$$

where  $E_n^{(i)}$  and  $|\phi_n^i\rangle$  are the *i*<sup>th</sup> order adjustments to the unperturbed energy and state due to the perturbation

• Substituting into the Schrödinger equation  $E_n |\psi_n\rangle = \hat{H} |\psi_n\rangle$ ,

$$(\hat{H}_0 + \lambda \hat{H}')(|\phi_n^{(0)}\rangle + \lambda |\phi_n^{(1)}\rangle + \lambda^2 |\phi_n^{(2)}\rangle + \dots) = (E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots)(|\phi_n^{(0)}\rangle + \lambda |\phi_n^{(1)}\rangle + \lambda^2 |\phi_n^{(2)}\rangle + \dots)$$



#### Expressing the Solution in Powers of the Perturbation

• If we group the coefficients of each power of  $\lambda$ , we find

$$\begin{aligned} 0 = & [\hat{H}_0 |\phi_n^{(0)}\rangle - E_n^{(0)} |\phi_n^{(0)}\rangle] \\ &+ \lambda [\hat{H}_0 |\phi_n^{(1)}\rangle + \hat{H}' |\phi_n^{(0)}\rangle - E_n^{(0)} |\phi_n^{(1)}\rangle - E_n^{(1)} |\phi_n^{(0)}\rangle] \\ &+ \lambda^2 [\dots] + \lambda^3 [\dots] + \dots \end{aligned}$$

Since each term for a given power of  $\lambda$  must equal zero, we obtain the coupled equations

$$\begin{split} \hat{H}_{0} |\phi_{n}^{(0)}\rangle &= E_{n}^{(0)} |\phi_{n}^{(0)}\rangle \\ \hat{H}_{0} |\phi_{n}^{(1)}\rangle + \hat{H}' |\phi_{n}^{(0)}\rangle &= E_{n}^{(0)} |\phi_{n}^{(1)}\rangle + E_{n}^{(1)} |\phi_{n}^{(0)}\rangle \\ \hat{H}_{0} |\phi_{n}^{(2)}\rangle + \hat{H}' |\phi_{n}^{(1)}\rangle &= E_{n}^{(0)} |\phi_{n}^{(2)}\rangle + E_{n}^{(1)} |\phi_{n}^{(1)}\rangle + E_{n}^{(2)} |\phi_{n}^{(0)}\rangle \end{split}$$



### First-Order Perturbation Energy Correction

• To first order in the perturbation (~  $\lambda^1$ ), we find  $\hat{H}_0 |\phi_n^{(1)}\rangle + \hat{H}' |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(1)}\rangle + E_n^{(1)} |\phi_n^{(0)}\rangle$ . We take its inner product with the unperturbed state  $\langle \phi_n^{(0)} |$  to obtain

$$\begin{split} \langle \phi_n^{(0)} | \left( \hat{H}_0 | \phi_n^{(1)} \right\rangle + \hat{H}' | \phi_n^{(0)} \rangle ) &= E_n^{(0)} \left\langle \phi_n^{(0)} | \phi_n^{(1)} \right\rangle + E_n^{(1)} \left\langle \phi_n^{(0)} | \phi_n^{(0)} \right\rangle \\ & E_n^{(0)} \left\langle \phi_n^{(0)} | \phi_n^{(1)} \right\rangle + \left\langle \phi_n^{(0)} | \hat{H}' | \phi_n^{(0)} \right\rangle = E_n^{(0)} \left\langle \phi_n^{(0)} | \phi_n^{(1)} \right\rangle + E_n^{(1)} \\ & \therefore E_n^{(1)} = \left\langle \phi_n^{(0)} | \hat{H}' | \phi_n^{(0)} \right\rangle \end{split}$$

• The first order correction to the energy of the  $n^{\text{th}}$  eigenstate due to the perturbation is simply the expectation value of  $\hat{H}'$  in the unperturbed state  $|\phi_n^{(0)}\rangle$ 



#### First-Order Wave Function Corrections

 Since the unperturbed eigenstates form a complete basis, the corrections generated by the perturbation can be written as a linear superposition of those states, e.g.,

$$\left|\phi_{n}^{(1)}\right\rangle = \sum_{k} \left|\phi_{k}^{(0)}\right\rangle \left\langle\phi_{k}^{(0)}\right|\phi_{n}^{(1)}\right\rangle = \sum_{k\neq n} c_{nk} \left|\phi_{k}^{(0)}\right\rangle + c_{nn} \left|\phi_{n}^{(0)}\right\rangle$$

• To first order,  $\hat{H}_0 |\phi_n^{(1)}\rangle + \hat{H}' |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(1)}\rangle + E_n^{(1)} |\phi_n^{(0)}\rangle$ . We find  $c_{nk}$  by taking the inner product with  $\left\langle \phi_k^{(0)} \right|$  for  $k \neq n$ :

$$\begin{split} \langle \phi_k^{(0)} | \hat{H}_0 | \phi_n^{(1)} \rangle + \langle \phi_k^{(0)} | \hat{H}' | \phi_n^{(0)} \rangle &= E_n^{(0)} \langle \phi_k^{(0)} | \phi_n^{(1)} \rangle \\ E_k^{(0)} \langle \phi_k^{(0)} | \phi_n^{(1)} \rangle + \langle \phi_k^{(0)} | \hat{H}' | \phi_n^{(0)} \rangle &= E_n^{(0)} \langle \phi_k^{(0)} | \phi_n^{(1)} \rangle \\ &\therefore \langle \phi_k^{(0)} | \phi_n^{(1)} \rangle = \frac{\langle \phi_k^{(0)} | \hat{H}' | \phi_n^{(0)} \rangle}{E_n^{(0)} - E_k^{(0)}} = \frac{H'_{kn}}{E_n^{(0)} - E_k^{(0)}} \end{split}$$



#### First-Order Wave Function Correction Normalization

• For 
$$n \neq k$$
,  $c_{nk} = \frac{H'_{kn}}{E_n^{(0)} - E_k^{(0)}}$ . What about  $n = k$ ?

• Return to  $\hat{H}_0 |\phi_n^{(1)}\rangle + \hat{H}' |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(1)}\rangle + E_n^{(1)} |\phi_n^{(0)}\rangle$ . Any solution  $\phi_n^{(1)} + a\phi_n^{(0)}$  satisfies this equation for some scalar *a*. However, the final wave function should be normalized. We can ensure this to order  $\lambda$  by ensuring all corrections to  $|\phi_n^{(0)}\rangle$  are normal to the original state:

$$1 = \langle \phi_n | \phi_n \rangle = \langle \phi_n^{(0)} | \phi_n^{(0)} \rangle + \lambda \left[ \langle \phi_n^{(0)} | \phi_n^{(1)} \rangle + \langle \phi_n^{(1)} | \phi_n^{(0)} \rangle \right] + \mathcal{O}(\lambda^2)$$

• Therefore to order  $\lambda$ ,  $|\phi_n^{(1)}\rangle$  is orthogonal to  $|\phi_n^{(0)}\rangle$ , i.e.,  $c_{nn} = 0$ . (This does not exactly normalize the state  $|\phi_n\rangle$  yet, which still needs to be done separately after finishing the perturbation calculation.)



## First-Order Perturbation Solution Summarized

• The exact solutions to the full Hamiltonian can therefore be approximated to first order in the perturbation as

$$\begin{split} \left|\phi_{n}\right\rangle &\approx \left|\phi_{n}^{(0)}\right\rangle + \sum_{k\neq n} \frac{H_{kn}'}{E_{n}^{(0)} - E_{k}^{(0)}} \left|\phi_{k}^{(0)}\right\rangle \\ E_{n} &\approx E_{n}^{(0)} + H_{nn}' \end{split}$$

where  $H'_{kn} = \langle \phi_k^{(0)} | \hat{H}' | \phi_n^{(0)} \rangle$ , as long as the unperturbed energies are **nondegenerate**, i.e.,  $E_n^{(0)} \neq E_k^{(0)}$  in general.

• This suggests that perturbation theory is useful if  $H'_{kn} \ll E_n^{(0)} - E_k^{(0)}$  (although this condition does not guarantee validity, or vice versa).



#### Second-Order Perturbation Correction

If we examine the next order  $(\sim \lambda^2)$  in the perturbation expansion

$$\hat{H}_0 |\phi_n^{(2)}\rangle + \hat{H}' |\phi_n^{(1)}\rangle = E_n^{(0)} |\phi_n^{(2)}\rangle + E_n^{(1)} |\phi_n^{(1)}\rangle + E_n^{(2)} |\phi_n^{(0)}\rangle$$

and follow the same procedure we will find

$$E_{n}^{(2)} = \left\langle \phi_{n}^{(0)} \left| \hat{H}' \right| \phi_{n}^{(1)} \right\rangle = \sum_{k \neq n} \frac{\left| \left\langle \phi_{k}^{(0)} \left| \hat{H}' \left| \phi_{n}^{(0)} \right\rangle \right|^{2}}{E_{n}^{(0)} - E_{k}^{(0)}} \right.$$

and a similar expression for the 2<sup>nd</sup> order wave function  $|\phi_n^{(2)}\rangle$  in terms of  $|\phi_n^{(0)}\rangle$ . In general we can determine the  $n^{\text{th}}$  order correction to the energy from the  $(n-1)^{\text{th}}$  order correction to the eigenstate.



#### Example: 1-D Quantum Well

Consider an 1-D infinite potential well between [-L/2, L/2]. (We shift the well to make it symmetric around the origin). We rewrite the unperturbed eigenstates as

$$E_n^{(0)} = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$$
  
$$\phi_n^{(0)}(x) = \begin{cases} \sqrt{\frac{2}{L}} \cos\left(\frac{n\pi x}{L}\right) & \text{for odd } n \\ \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) & \text{for even } n \end{cases}$$

 $(\phi_n^{(0)}(x) = 0 \text{ outside the well.})$ Suppose we add a perturbation  $H' = V_0 \text{ for } -L/2 \le x \le 0 \text{ and}$ V = 0 otherwise.



The perturbative energy shift of the ground state n = 1 is

$$E_1^{(1)} = \langle \phi_1^{(0)} | \hat{H}' | \phi_1^{(0)} \rangle = \frac{2}{L} \int_{-L/2}^0 V_0 \cos^2\left(\frac{n\pi x}{L}\right) dx = \frac{V_0}{2}$$

The first order change in the wave function of the ground state is given by

$$|\phi_1^{(1)}\rangle = \sum_{k \neq 1} \frac{H'_{k1}}{E_1^{(0)} - E_k^{(0)}} \left|\phi_k^{(0)}\right\rangle$$

Let us compute the coefficients  $c_{1k}$  describing the admixture of the excited unperturbed states into the perturbed ground state.



#### 1-D Quantum Well with Step Potential cont'ed

$$c_{1k} = \frac{\langle \phi_k^{(0)} | H' | \phi_1^{(0)} \rangle}{E_1^{(0)} - E_k^{(0)}}$$

For even  $k = 2, 4, \ldots$ 

$$c_{1k} = \frac{1}{E_1^{(0)}(1-k^2)} \int_{-L/2}^0 \frac{2}{L} V_0 \cos\left(\frac{\pi x}{L}\right) \sin\left(\frac{k\pi x}{L}\right) dx$$
$$= \frac{V_0}{E_1^{(0)}(1-k^2)} \frac{2k}{\pi(1-k)}$$

For odd  $k = 3, 5, \ldots$ 

$$c_{1k} = \frac{1}{E_1^{(0)}(1-k^2)} \int_{-L/2}^0 \frac{2}{L} V_0 \cos\left(\frac{\pi x}{L}\right) \cos\left(\frac{k\pi x}{L}\right) dx = 0$$

### First Order Solution to Step Potential Well

Therefore the shifted energy of the ground state, to first order, is

$$E_1 \approx \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{2}$$

and the wave function for the new ground state to first order is

$$\phi_1(x) \approx \sqrt{\frac{2}{L}} \cos\left(\frac{\pi x}{L}\right) + \sqrt{\frac{2}{L}} \sum_{m=1}^{\infty} \frac{4mV_0}{E_1^{(0)}(1-(2m)^2)\pi(1-2m)} \sin\left(\frac{2m\pi x}{L}\right)$$



#### The Stark Effect: First Order Solution

- Consider an 1-D infinite potential well with an applied electric field  $\hat{H} = \hat{H}_0 + \hat{H}'$  where  $\hat{H}' = -eEx$ .
- The electric field leads to a shift of the energy levels, which is known as the quantum confined Stark effect (and experimentally observable in semiconductor quantum wells, among other manifestations).
- However, the first order correction to the ground state (and all excited states with n > 1) vanishes:

$$\begin{split} E_1^{(1)} &= \langle \phi_1^{(0)} | \hat{H}' | \phi_1^{(0)} \rangle \\ &= \frac{2}{L} \int_{-L/2}^{L/2} \cos^2 \left( \frac{\pi x}{L} \right) (-eEx) dx = 0 \end{split}$$

 Need to go to second order to get corrections to the energy levels...
EE270 Fall 2017



### Degenerate Perturbation Theory

• If we apply perturbation theory for a system where  $\hat{H}_0$  has degeneracies, i.e.,  $E_n^{(0)} = E_k^{(0)}$  for some  $n \neq k$ , the 2<sup>nd</sup> order energy shift diverges

$$c_{nk} = \frac{H'_{kn}}{E_n^{(0)} - E_k^{(0)}} = \frac{H'_{kn}}{0}$$

- Degeneracies generally reflect a symmetry in the unperturbed Hamiltonian. If we break the symmetry with a perturbation  $\hat{H}'$ , the degeneracy should be broken as well.
- For degenerate states, we can construct linear combinations such that  $H'_{kn} = 0$  for the new states. Using these states as a new basis for the perturbation expansion, the divergences in the coefficients  $c_{nk}$  vanish.



## Curing Degeneracies in Perturbation Theory

- Suppose there is a q-fold degeneracy in the eigenstates of  $\hat{H}_0$ . We can construct q linear combinations of  $|\phi_q^{(0)}\rangle$ , which we denote as  $|\bar{\phi}_q\rangle$ , such that  $H'_{kn} = \langle \bar{\phi}_k | \hat{H}' | \bar{\phi}_n \rangle = 0$  for  $k, n \in \{q\}$ .
- We can then replace our original basis set of eigenfunctions of  $\hat{H}_0 \{\phi_1^{(0)}, \phi_2^{(0)}, \dots, \phi_q^{(0)}, \phi_{q+1}^{(0)}, \phi_{q+2}^{(0)}, \dots\}$  with a new basis set  $\{\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_q, \phi_{q+1}^{(0)}, \phi_{q+2}^{(0)}, \dots\}$  that we can use for perturbation theory calculations.
- Note that the states  $\{\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_q\}$  are still eigenstates of  $\hat{H}_0$  since they have the same eigenenergy in  $\hat{H}_0$ .



#### Curing Degeneracies - Matrix Notation

- Suppose the first three eigenstates of  $H_0$  are degenerate. We work with the basis of eigenstates  $\{\phi_1^{(0)}, \phi_2^{(0)}, \phi_3^{(0)}, \phi_4^{(0)}, \dots\}$ .
- Then we diagonalize the  $3 \times 3$  submatrix of H' to find new basis functions  $\bar{\phi}_1, \bar{\phi}_2, \bar{\phi}_3$ :

In 
$$\{\bar{\phi}_1, \bar{\phi}_2, \bar{\phi}_3, \phi_4^{(0)}, \dots\}$$
 basis:

$$\rightarrow \begin{bmatrix} E_1' & 0 & 0 & H_{\bar{1}4}' & \dots \\ 0 & E_2' & 0 & H_{\bar{2}4}' & \dots \\ 0 & 0 & E_3' & H_{\bar{3}4}' & \dots \\ H_{4\bar{1}}' & H_{4\bar{2}}' & H_{4\bar{3}}' & H_{44}' & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

where  $H'_{\bar{i}j} = \langle \bar{\phi}_i | \hat{H}' | \phi_j^{(0)} \rangle$  and  $E'_i = \langle \bar{\phi}_i | \hat{H}' | \bar{\phi}_i \rangle$  for i = 1, 2, 3 and j > 3.

#### Curing Degeneracies - Matrix Notation cont'ed

Specifically, for the example above we write down the submatrix (in the basis  $|\phi_1^{(0)}\rangle\,, |\phi_2^{(0)}\rangle\,, |\phi_3^{(0)}\rangle)$ 

$$H'_{q=3} = \begin{bmatrix} H'_{11} & H'_{12} & H'_{13} \\ H'_{21} & H'_{22} & H'_{23} \\ H'_{31} & H'_{32} & H'_{33} \end{bmatrix}$$

and we search for the q=3 eigenstates  $|\bar{\phi}_i\rangle$  of this submatrix such that

$$H_q' \left| \bar{\phi}_i \right\rangle = E_i' \left| \bar{\phi}_i \right\rangle$$

The latter implies that  $H'_{q=3}$  in the basis  $|\bar{\phi}_1\rangle$ ,  $|\bar{\phi}_2\rangle$ ,  $|\bar{\phi}_3\rangle$  is

$$H'_{q=3} = \begin{bmatrix} E'_1 & 0 & 0\\ 0 & E'_2 & 0\\ 0 & 0 & E'_3 \end{bmatrix}$$



#### Degenerate Perturbation Theory Results

- The diagonal elements  $E'_n = \langle \bar{\phi}_n | \hat{H}' | \bar{\phi}_n \rangle$  are the first-order perturbation corrections to  $E_n^{(0)}$  for  $n \leq q$ .
- If  $E'_m \neq E'_n$ , the perturbation removes the degeneracy.
- For a q-fold degeneracy, the states  $|\bar{\phi}_n\rangle = \sum_{m=1}^q c_{nm} \left|\phi_m^{(0)}\right\rangle$ , where  $c_{nm} = \langle \phi_m^{(0)} | \bar{\phi}_n \rangle$ .
- In general, we obtain the energy shifts  $E'_n$  and the states  $|\bar{\phi}_n\rangle$  by finding the eigenvalues and eigenfunctions of H'.
- Therefore we solve for  $E'_n$  by using the secular equation det  $|H' E'_n I| = 0$  where I is the identity matrix. The corresponding eigenfunctions gives  $|\bar{\phi}_n\rangle$ .



### Degenerate Perturbation Theory Recipe

- For q-fold degeneracy in  $\hat{H}_0$ , construct the  $q \times q$  matrix of  $\hat{H}'$ , which we denote  $H'_q$ , in the set of  $\{\phi_q^{(0)}\}$  degenerate eigenstates of  $\hat{H}_0$ .
- Diagonalize the perturbation matrix  $H'_q$  by solving the corresponding secular equation.
- The q roots of  $H'_q$  are the first-order energy shifts to the previously degenerate energies in  $\hat{H}_0$ .
- Replace the states \$\{\phi\_q^{(0)}\}\$ with the states \$\{\bar{\phi}\_q\}\$ which diagonalize \$H'\_q\$ and use the resulting basis \$\{\bar{\phi}\_1, \bar{\phi}\_2, \ldots, \bar{\phi}\_q, \phi\_{q+1}^{(0)}, \phi\_{q+2}^{(0)}, \ldots\$ \$\}\$ in the formulas for nondegenerate perturbation theory.



# Part II

# The Wentzel-Kramers-Brillouin(-Jeffreys) Approximation



WKB = Wentzel-Kramers-Brillouin (sometimes +J for Jeffreys) is a way to *semiclassically* approximate wave functions for slowly varying V(x).

We write a general wave function  $\psi(x) = A e^{iS(x)/\hbar}$  where A is real and S(x) is a complex function.

Substituting  $\psi(x)$  in the Schrödinger equation we obtain

$$-i\hbar \frac{\partial^2 S(x)}{\partial x^2} + \left(\frac{\partial S(x)}{\partial x}\right)^2 = p^2(x)$$
$$p(x) = \sqrt{2m(E - V(x))} \equiv \hbar k(x)$$

Now expand S(x) in powers of  $\hbar$  such that

$$S(x) = S_0(x) + \hbar S_1(x) + \frac{\hbar^2}{2}S_2(x) + \cdots$$



## WKB Approximation cont'ed

Using the series expansion of S(x) we find

$$0 = \left[ \left( \frac{\partial S_0(x)}{\partial x} \right)^2 - p^2(x) \right] + 2\hbar \left[ \frac{\partial S_0}{\partial x} \frac{\partial S_1}{\partial x} - \frac{i}{2} \frac{\partial^2 S_0(x)}{\partial x^2} \right] + \\ \hbar^2 \left[ \frac{\partial S_0}{\partial x} \frac{\partial S_2}{\partial x} + \left( \frac{\partial S_1(x)}{\partial x} \right)^2 - i \frac{\partial^2 S_0(x)}{\partial x^2} \right] + \mathcal{O}(\hbar^3)$$

Every term of the series in  $\hbar$  must vanish, i.e.,

$$\left(\frac{\partial S_0(x)}{\partial x}\right)^2 = p^2(x)$$
$$\frac{\partial S_0}{\partial x}\frac{\partial S_1}{\partial x} = \frac{i}{2}\frac{\partial^2 S_0(x)}{\partial x^2}$$
$$\frac{\partial S_0}{\partial x}\frac{\partial S_2}{\partial x} + \left(\frac{\partial S_1(x)}{\partial x}\right)^2 = i\frac{\partial^2 S_0(x)}{\partial x^2}$$

:



### WKB Approximation cont'ed

We can solve the equations sequentially:

$$S_0(x) = \pm \int_{x_0}^x p(x')dx' = \pm \hbar \int_{x_0}^x k(x')dx'$$
$$S_1(x) = \frac{i}{2}\ln\left(\frac{\partial S_0}{\partial x}\right) = \frac{i}{2}\ln(\hbar k(x))$$

Substituting  $S_0 + \hbar S_1$  in  $\psi$  and absorbing integration constants in A

$$\psi(x) \approx Ak^{-1/2}(x) \exp\left(\pm i \int^x k(x')dx'\right) \text{ for } E > V(x)$$
  
$$\psi(x) \approx A\kappa^{-1/2}(x) \exp\left(\pm \int^x \kappa(x')dx'\right) \text{ for } E < V(x)$$

where  $\kappa = \sqrt{2m(V(x) - E)/\hbar^2}$ .



Retaining lowest order terms is reasonable if  $|\hbar S_1/S_0| \ll 1$ . As long as k does not vanish (at classical turning points) and  $S_0$  increases monotonically, this implies  $|\hbar S'_1/S'_0| \ll 1$ :

$$\left|\frac{\hbar S_1'(x)}{S_0(x)}\right| = \left|\frac{k'(x)}{2k^2(x)}\right| = \frac{\lambda(x)}{4\pi k(x)} \left|\frac{dk}{dx}\right| \ll 1$$

where  $\lambda = 2\pi/k$  is the local de Broglie length. In other words, the WKB approximation is valid when V(x) changes so slowly that the local momentum is constant over a few wavelengths

$$\frac{\lambda(x)}{4\pi} \left| \frac{dk(x)}{dx} \right| \ll k(x)$$



## WKB Approximation - Applications

- The WKB approximation breaks down near classical turning points because  $k(x) \to 0$  and  $\lambda \to \infty$ . A boundary condition matching procedure can be performed to "patch" the wave functions in this region (refer to text for details).
- WKB is particularly useful for estimating tunneling rates and bound state energies. Since bound states imply standing waves, we require that

$$\int_{x_1}^{x_2} k(x) dx = \int_{x_1}^{x_2} \frac{\sqrt{2m(E-V(x))}}{\hbar} dx = n\pi + \delta\theta$$

where  $x_1, x_2$  are the classical turning points and n is an integer.

•  $\delta\theta$  is an additional phase accounting for penetration of wave function into barrier. For each "soft" barrier, i.e., V(x) changes smoothly around classical turning point,  $\delta\theta$  contributes a phase of  $-\pi/4$ . For each "hard" barrier  $(V(x) \to \infty)$ ,  $\delta\theta = 0$ . If the potential is finite on both sides of the bound state, total EE270  $\delta\theta_{11}=2017\pi/2$ .

### Tunneling in WKB Approximation

- In classically forbidden regions (V(x) > E), we can assume the form of the wave function  $\psi(x) \approx \frac{A}{\sqrt{\kappa(x)}} \exp(\pm \int \kappa(x') dx')$  where where  $\kappa(x) = \sqrt{\frac{2m(V(x) - E)}{\hbar^2}}$
- We can estimate the tunneling probability through a classically forbidden region bounded by  $[x_1, x_2]$  using

$$T = \left|\frac{\Psi(x_2)}{\Psi(x_1)}\right|^2 \simeq \exp\left(-2\int_{x_1}^{x_2} \kappa(x)dx\right)$$

 In practice this equation is very helpful for estimating tunneling in real physical systems, including semiconductor devices

#### Example: Computing Bound State Energy for SHO

Let  $V(x) = m\omega x^2/2$  and define classical turning point  $x_0 = \pm \sqrt{\frac{2E}{m\omega^2}}$ 

$$\int_{x_1}^{x_2} k dx = \int_{-x_0}^{x_0} \sqrt{\frac{2m(E - m\omega x^2/2)}{\hbar^2}} dx$$
$$= \sqrt{\frac{2mE}{\hbar^2}} \int_{-x_0}^{x_0} \sqrt{1 - \frac{x^2}{x_0^2}} dx$$
$$= \sqrt{\frac{2mE}{\hbar^2}} x_0 \int_0^{\pi} \sqrt{1 - \cos^2 \theta} \sin \theta d\theta$$
$$= \frac{2E}{\hbar \omega} \frac{\pi}{2} = (n - \frac{1}{2})\pi$$

for  $n = 1, 2, 3, \ldots$  This implies  $E = \hbar \omega (n + \frac{1}{2})$  for  $n = 0, 1, 2 \ldots$ which coincides with the exact solution for the SHO. Most of the time WKB is not so exact, but it is often a good estimate.

EE270 Fall 2017

.)

#### Example: Fowler-Nordheim Tunneling

• Consider the triangular potential barrier

$$V(x) = \begin{cases} V_0 - eFx & 0 \le x \le \frac{V_0}{eF} \\ 0 & \text{otherwise} \end{cases}$$

• The tunneling probability through the barrier can be estimated in the WKB approximation (where  $x_0 = \frac{V_0 - E}{eF}$ )

$$T(E) = \exp\left(-2\int_{0}^{x_{0}} \sqrt{\frac{2m(V_{0} - E - eFx)}{\hbar^{2}}} dx\right)$$
$$= \exp\left(-2\sqrt{\frac{2m(V_{0} - E)}{\hbar^{2}}} \int_{0}^{x_{0}} \sqrt{1 - x/x_{0}} dx\right)$$
$$= \exp\left(-\frac{4}{3}\sqrt{\frac{2m}{\hbar^{2}}} \frac{(V_{0} - E)^{3/2}}{eF}\right)$$

