Supplementary information II

Time-Independent Perturbation Theory \& WKB Approximation

Part I

Time-Independent Perturbation Theory

Solving Problems Perturbatively

- For most realistic problems, the full Hamiltonian cannot be solved exactly.
- However, sometimes we can separate the full Hamiltonian into two parts

$$
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}
$$

where the unperturbed Hamiltonian has known solutions $E_{n}^{(0)}$ and $\left|\phi_{n}^{(0)}\right\rangle$

$$
\hat{H}_{0}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left|\phi_{n}^{(0)}\right\rangle
$$

- If the "perturbation" Hamiltonian \hat{H}^{\prime} is small in some sense compared to \hat{H}_{0}, it only causes small corrections to $\left|\phi_{n}^{(0)}\right\rangle$ and $E_{n}^{(0)}$.
- In this section, we study the case when \hat{H}^{\prime} is time-independent and try to construct approximate solutions to $\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}$.

Expressing the Problem in Powers of the Perturbation

- We rewrite \hat{H} as $\hat{H}=\hat{H}_{0}+\lambda \hat{H}^{\prime}$, where λ is a dimensionless parameter by which we tune the magnitude of the perturbation and keep track of different perturbation terms
- In general the exact solutions to \hat{H} can be written as

$$
\begin{aligned}
E_{n} & =E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots \\
\left|\phi_{n}\right\rangle & =\left|\phi_{n}^{(0)}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots
\end{aligned}
$$

where $E_{n}^{(i)}$ and $\left|\phi_{n}^{i}\right\rangle$ are the $i^{\text {th }}$ order adjustments to the unperturbed energy and state due to the perturbation

- Substituting into the Schrödinger equation $E_{n}\left|\psi_{n}\right\rangle=\hat{H}\left|\psi_{n}\right\rangle$,

$$
\begin{aligned}
& \left(\hat{H}_{0}+\lambda \hat{H}^{\prime}\right)\left(\left|\phi_{n}^{(0)}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right)= \\
& \left(E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots\right)\left(\left|\phi_{n}^{(0)}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right)
\end{aligned}
$$

Expressing the Solution in Powers of the Perturbation

- If we group the coefficients of each power of λ, we find

$$
\begin{aligned}
0= & {\left[\hat{H}_{0}\left|\phi_{n}^{(0)}\right\rangle-E_{n}^{(0)}\left|\phi_{n}^{(0)}\right\rangle\right] } \\
& +\lambda\left[\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle-E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle-E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle\right] \\
& +\lambda^{2}[\ldots]+\lambda^{3}[\ldots]+\ldots
\end{aligned}
$$

- Since each term for a given power of λ must equal zero, we obtain the coupled equations

$$
\begin{aligned}
\hat{H}_{0}\left|\phi_{n}^{(0)}\right\rangle & =E_{n}^{(0)}\left|\phi_{n}^{(0)}\right\rangle \\
\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle & =E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle \\
\hat{H}_{0}\left|\phi_{n}^{(2)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(1)}\right\rangle & =E_{n}^{(0)}\left|\phi_{n}^{(2)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(2)}\left|\phi_{n}^{(0)}\right\rangle
\end{aligned}
$$

First-Order Perturbation Energy Correction

- To first order in the perturbation $\left(\sim \lambda^{1}\right)$, we find $\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle$. We take its inner product with the unperturbed state $\left\langle\phi_{n}^{(0)}\right|$ to obtain

$$
\begin{array}{r}
\left\langle\phi_{n}^{(0)}\right|\left(\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle\right)=E_{n}^{(0)}\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(1)}\right\rangle+E_{n}^{(1)}\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(0)}\right\rangle \\
E_{n}^{(0)}\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(1)}\right\rangle+\left\langle\phi_{n}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(1)}\right\rangle+E_{n}^{(1)} \\
\therefore E_{n}^{(1)}=\left\langle\phi_{n}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle
\end{array}
$$

- The first order correction to the energy of the $n^{\text {th }}$ eigenstate due to the perturbation is simply the expectation value of \hat{H}^{\prime} in the unperturbed state $\left|\phi_{n}^{(0)}\right\rangle$

First-Order Wave Function Corrections

- Since the unperturbed eigenstates form a complete basis, the corrections generated by the perturbation can be written as a linear superposition of those states, e.g.,

$$
\left|\phi_{n}^{(1)}\right\rangle=\sum_{k}\left|\phi_{k}^{(0)}\right\rangle\left\langle\phi_{k}^{(0)} \mid \phi_{n}^{(1)}\right\rangle=\sum_{k \neq n} c_{n k}\left|\phi_{k}^{(0)}\right\rangle+c_{n n}\left|\phi_{n}^{(0)}\right\rangle
$$

- To first order, $\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle$. We find $c_{n k}$ by taking the inner product with $\left\langle\phi_{k}^{(0)}\right|$ for $k \neq n$:

$$
\begin{aligned}
&\left\langle\phi_{k}^{(0)}\right| \hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\left\langle\phi_{k}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left\langle\phi_{k}^{(0)} \mid \phi_{n}^{(1)}\right\rangle \\
& E_{k}^{(0)}\left\langle\phi_{k}^{(0)} \mid \phi_{n}^{(1)}\right\rangle+\left\langle\phi_{k}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left\langle\phi_{k}^{(0)} \mid \phi_{n}^{(1)}\right\rangle \\
& \therefore\left\langle\phi_{k}^{(0)} \mid \phi_{n}^{(1)}\right\rangle=\frac{\left\langle\phi_{k}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle}{E_{n}^{(0)}-E_{k}^{(0)}}=\frac{H_{k n}^{\prime}}{E_{n}^{(0)}-E_{k}^{(0)}}
\end{aligned}
$$

First-Order Wave Function Correction Normalization

- For $n \neq k, c_{n k}=\frac{H_{k n}^{\prime}}{E_{n}^{(0)}-E_{k}^{(0)}}$. What about $n=k$?
- Return to $\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle=E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle$. Any solution $\phi_{n}^{(1)}+a \phi_{n}^{(0)}$ satisfies this equation for some scalar a. However, the final wave function should be normalized. We can ensure this to order λ by ensuring all corrections to $\left|\phi_{n}^{(0)}\right\rangle$ are normal to the original state:

$$
1=\left\langle\phi_{n} \mid \phi_{n}\right\rangle=\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(0)}\right\rangle+\lambda\left[\left\langle\phi_{n}^{(0)} \mid \phi_{n}^{(1)}\right\rangle+\left\langle\phi_{n}^{(1)} \mid \phi_{n}^{(0)}\right\rangle\right]+\mathcal{O}\left(\lambda^{2}\right)
$$

- Therefore to order $\lambda,\left|\phi_{n}^{(1)}\right\rangle$ is orthogonal to $\left|\phi_{n}^{(0)}\right\rangle$, i.e., $c_{n n}=0$. (This does not exactly normalize the state $\left|\phi_{n}\right\rangle$ yet, which still needs to be done separately after finishing the perturbation calculation.)

First-Order Perturbation Solution Summarized

- The exact solutions to the full Hamiltonian can therefore be approximated to first order in the perturbation as

$$
\begin{aligned}
\left|\phi_{n}\right\rangle & \approx\left|\phi_{n}^{(0)}\right\rangle+\sum_{k \neq n} \frac{H_{k n}^{\prime}}{E_{n}^{(0)}-E_{k}^{(0)}}\left|\phi_{k}^{(0)}\right\rangle \\
E_{n} & \approx E_{n}^{(0)}+H_{n n}^{\prime}
\end{aligned}
$$

where $H_{k n}^{\prime}=\left\langle\phi_{k}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(0)}\right\rangle$, as long as the unperturbed energies are nondegenerate, i.e., $E_{n}^{(0)} \neq E_{k}^{(0)}$ in general.

- This suggests that perturbation theory is useful if $H_{k n}^{\prime} \ll E_{n}^{(0)}-E_{k}^{(0)}$ (although this condition does not guarantee validity, or vice versa).

Second-Order Perturbation Correction

If we examine the next order $\left(\sim \lambda^{2}\right)$ in the perturbation expansion

$$
\hat{H}_{0}\left|\phi_{n}^{(2)}\right\rangle+\hat{H}^{\prime}\left|\phi_{n}^{(1)}\right\rangle=E_{n}^{(0)}\left|\phi_{n}^{(2)}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{(2)}\left|\phi_{n}^{(0)}\right\rangle
$$

and follow the same procedure we will find

$$
E_{n}^{(2)}=\left\langle\phi_{n}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{n}^{(1)}\right\rangle=\sum_{k \neq n} \frac{\left.\left|\left\langle\phi_{k}^{(0)}\right| \hat{H}^{\prime}\right| \phi_{n}^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}}
$$

and a similar expression for the $2^{\text {nd }}$ order wave function $\left|\phi_{n}^{(2)}\right\rangle$ in terms of $\left|\phi_{n}^{(0)}\right\rangle$.
In general we can determine the $n^{\text {th }}$ order correction to the energy from the $(n-1)^{\text {th }}$ order correction to the eigenstate.

Example: 1-D Quantum Well

Consider an 1-D infinite potential well between $[-L / 2, L / 2]$. (We shift the well to make it symmetric around the origin). We rewrite the unperturbed eigenstates as

$$
\begin{aligned}
E_{n}^{(0)} & =\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}} \\
\phi_{n}^{(0)}(x) & =\left\{\begin{array}{l}
\sqrt{\frac{2}{L}} \cos \left(\frac{n \pi x}{L}\right) \text { for odd } n \\
\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \text { for even } n
\end{array}\right.
\end{aligned}
$$

$\left(\phi_{n}^{(0)}(x)=0\right.$ outside the well.)
Suppose we add a perturbation $H^{\prime}=V_{0}$ for $-L / 2 \leq x \leq 0$ and

1-D Quantum Well with Step Potential

The perturbative energy shift of the ground state $n=1$ is

$$
E_{1}^{(1)}=\left\langle\phi_{1}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{1}^{(0)}\right\rangle=\frac{2}{L} \int_{-L / 2}^{0} V_{0} \cos ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{V_{0}}{2}
$$

The first order change in the wave function of the ground state is given by

$$
\left|\phi_{1}^{(1)}\right\rangle=\sum_{k \neq 1} \frac{H_{k 1}^{\prime}}{E_{1}^{(0)}-E_{k}^{(0)}}\left|\phi_{k}^{(0)}\right\rangle
$$

Let us compute the coefficients $c_{1 k}$ describing the admixture of the excited unperturbed states into the perturbed ground state.

1-D Quantum Well with Step Potential cont'ed

$$
c_{1 k}=\frac{\left\langle\phi_{k}^{(0)}\right| H^{\prime}\left|\phi_{1}^{(0)}\right\rangle}{E_{1}^{(0)}-E_{k}^{(0)}}
$$

For even $k=2,4, \ldots$

$$
\begin{aligned}
c_{1 k} & =\frac{1}{E_{1}^{(0)}\left(1-k^{2}\right)} \int_{-L / 2}^{0} \frac{2}{L} V_{0} \cos \left(\frac{\pi x}{L}\right) \sin \left(\frac{k \pi x}{L}\right) d x \\
& =\frac{V_{0}}{E_{1}^{(0)}\left(1-k^{2}\right)} \frac{2 k}{\pi(1-k)}
\end{aligned}
$$

For odd $k=3,5, \ldots$

$$
c_{1 k}=\frac{1}{E_{1}^{(0)}\left(1-k^{2}\right)} \int_{-L / 2}^{0} \frac{2}{L} V_{0} \cos \left(\frac{\pi x}{L}\right) \cos \left(\frac{k \pi x}{L}\right) d x=0
$$

First Order Solution to Step Potential Well

Therefore the shifted energy of the ground state, to first order, is

$$
E_{1} \approx \frac{\hbar^{2} \pi^{2}}{2 m L^{2}}+\frac{V_{0}}{2}
$$

and the wave function for the new ground state to first order is
$\phi_{1}(x) \approx \sqrt{\frac{2}{L}} \cos \left(\frac{\pi x}{L}\right)+\sqrt{\frac{2}{L}} \sum_{m=1}^{\infty} \frac{4 m V_{0}}{E_{1}^{(0)}\left(1-(2 m)^{2}\right) \pi(1-2 m)} \sin \left(\frac{2 m \pi x}{L}\right)$

EE270 Fall 2017

The Stark Effect: First Order Solution

- Consider an 1-D infinite potential well with an applied electric field $\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}$ where $\hat{H}^{\prime}=-e E x$.
- The electric field leads to a shift of the energy levels, which is known as the quantum confined Stark effect (and experimentally observable in semiconductor quantum wells, among other manifestations).
- However, the first order correction to the ground state (and all excited states with $n>1$) vanishes:

$$
\begin{aligned}
E_{1}^{(1)} & =\left\langle\phi_{1}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{1}^{(0)}\right\rangle \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} \cos ^{2}\left(\frac{\pi x}{L}\right)(-e E x) d x=0
\end{aligned}
$$

- Need to go to second order to get corrections to the energy levels...

Degenerate Perturbation Theory

- If we apply perturbation theory for a system where \hat{H}_{0} has degeneracies, i.e., $E_{n}^{(0)}=E_{k}^{(0)}$ for some $n \neq k$, the $2^{\text {nd }}$ order energy shift diverges

$$
c_{n k}=\frac{H_{k n}^{\prime}}{E_{n}^{(0)}-E_{k}^{(0)}}=\frac{H_{k n}^{\prime}}{0}
$$

- Degeneracies generally reflect a symmetry in the unperturbed Hamiltonian. If we break the symmetry with a perturbation \hat{H}^{\prime}, the degeneracy should be broken as well.
- For degenerate states, we can construct linear combinations such that $H_{k n}^{\prime}=0$ for the new states. Using these states as a new basis for the perturbation expansion, the divergences in the coefficients $c_{n k}$ vanish.

Curing Degeneracies in Perturbation Theory

- Suppose there is a q-fold degeneracy in the eigenstates of \hat{H}_{0}. We can construct q linear combinations of $\left|\phi_{q}^{(0)}\right\rangle$, which we denote as $\left|\bar{\phi}_{q}\right\rangle$, such that $H_{k n}^{\prime}=\left\langle\bar{\phi}_{k}\right| \hat{H}^{\prime}\left|\bar{\phi}_{n}\right\rangle=0$ for $k, n \in\{q\}$.
- We can then replace our original basis set of eigenfunctions of $\hat{H}_{0}\left\{\phi_{1}^{(0)}, \phi_{2}^{(0)}, \ldots, \phi_{q}^{(0)}, \phi_{q+1}^{(0)}, \phi_{q+2}^{(0)}, \ldots\right\}$ with a new basis set $\left\{\bar{\phi}_{1}, \bar{\phi}_{2}, \ldots, \bar{\phi}_{q}, \phi_{q+1}^{(0)}, \phi_{q+2}^{(0)}, \ldots\right\}$ that we can use for perturbation theory calculations.
- Note that the states $\left\{\bar{\phi}_{1}, \bar{\phi}_{2}, \ldots, \bar{\phi}_{q}\right\}$ are still eigenstates of \hat{H}_{0} since they have the same eigenenergy in \hat{H}_{0}.

Curing Degeneracies - Matrix Notation

- Suppose the first three eigenstates of H_{0} are degenerate. We work with the basis of eigenstates $\left\{\phi_{1}^{(0)}, \phi_{2}^{(0)}, \phi_{3}^{(0)}, \phi_{4}^{(0)}, \ldots\right\}$.
- Then we diagonalize the 3×3 submatrix of H^{\prime} to find new basis functions $\bar{\phi}_{1}, \bar{\phi}_{2}, \bar{\phi}_{3}$:

In $\left\{\phi_{1}^{(0)}, \phi_{2}^{(0)}, \phi_{3}^{(0)}, \phi_{4}^{(0)}, \ldots\right\}$ basis:
$H^{\prime}=\left[\begin{array}{ccccc}H_{11}^{\prime} & H_{12}^{\prime} & H_{13}^{\prime} & H_{14}^{\prime} & \cdots \\ H_{21}^{\prime} & H_{22}^{\prime} & H_{23}^{\prime} & H_{24}^{\prime} & \cdots \\ H_{31}^{\prime} & H_{32}^{\prime} & H_{33}^{\prime} & H_{34}^{\prime} & \cdots \\ H_{41}^{\prime} & H_{42}^{\prime} & H_{43}^{\prime} & H_{44}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$

$$
\text { where } H_{i j}^{\prime}=\left\langle\phi_{i}^{(0)}\right| \hat{H}^{\prime}\left|\phi_{j}^{(0)}\right\rangle
$$

$$
\rightarrow\left[\begin{array}{ccccc}
E_{1}^{\prime} & 0 & 0 & H_{\overline{1} 4}^{\prime} & \cdots \\
0 & E_{2}^{\prime} & 0 & H_{\overline{2} 4}^{\prime} & \cdots \\
0 & 0 & E_{3}^{\prime} & H_{\overline{3} 4}^{\prime} & \cdots \\
H_{4 \overline{1}}^{\prime} & H_{4 \overline{2}}^{\prime} & H_{4 \overline{3}}^{\prime} & H_{44}^{\prime} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where $H_{\bar{i} j}^{\prime}=\left\langle\bar{\phi}_{i}\right| \hat{H}^{\prime}\left|\phi_{j}^{(0)}\right\rangle$ and
$E_{i}^{\prime}=\left\langle\bar{\phi}_{i}\right| \hat{H}^{\prime}\left|\bar{\phi}_{i}\right\rangle$ for $i=1,2,3$ and $j>3$.

TELECOM 18

Curing Degeneracies - Matrix Notation cont'ed

Specifically, for the example above we write down the submatrix (in the basis $\left.\left|\phi_{1}^{(0)}\right\rangle,\left|\phi_{2}^{(0)}\right\rangle,\left|\phi_{3}^{(0)}\right\rangle\right)$

$$
H_{q=3}^{\prime}=\left[\begin{array}{ccc}
H_{11}^{\prime} & H_{12}^{\prime} & H_{13}^{\prime} \\
H_{21}^{\prime} & H_{22}^{\prime} & H_{23}^{\prime} \\
H_{31}^{\prime} & H_{32}^{\prime} & H_{33}^{\prime}
\end{array}\right]
$$

and we search for the $q=3$ eigenstates $\left|\bar{\phi}_{i}\right\rangle$ of this submatrix such that

$$
H_{q}^{\prime}\left|\bar{\phi}_{i}\right\rangle=E_{i}^{\prime}\left|\bar{\phi}_{i}\right\rangle
$$

The latter implies that $H_{q=3}^{\prime}$ in the basis $\left|\bar{\phi}_{1}\right\rangle,\left|\bar{\phi}_{2}\right\rangle,\left|\bar{\phi}_{3}\right\rangle$ is

$$
H_{q=3}^{\prime}=\left[\begin{array}{ccc}
E_{1}^{\prime} & 0 & 0 \\
0 & E_{2}^{\prime} & 0 \\
0 & 0 & E_{3}^{\prime}
\end{array}\right]
$$

Degenerate Perturbation Theory Results

- The diagonal elements $E_{n}^{\prime}=\left\langle\bar{\phi}_{n}\right| \hat{H}^{\prime}\left|\bar{\phi}_{n}\right\rangle$ are the first-order perturbation corrections to $E_{n}^{(0)}$ for $n \leq q$.
- If $E_{m}^{\prime} \neq E_{n}^{\prime}$, the perturbation removes the degeneracy.
- For a q-fold degeneracy, the states $\left|\bar{\phi}_{n}\right\rangle=\sum_{m=1}^{q} c_{n m}\left|\phi_{m}^{(0)}\right\rangle$, where $c_{n m}=\left\langle\phi_{m}^{(0)} \mid \bar{\phi}_{n}\right\rangle$.
- In general, we obtain the energy shifts E_{n}^{\prime} and the states $\left|\bar{\phi}_{n}\right\rangle$ by finding the eigenvalues and eigenfunctions of H^{\prime}.
- Therefore we solve for E_{n}^{\prime} by using the secular equation $\operatorname{det}\left|H^{\prime}-E_{n}^{\prime} I\right|=0$ where I is the identity matrix. The corresponding eigenfunctions gives $\left|\bar{\phi}_{n}\right\rangle$.

Degenerate Perturbation Theory Recipe

- For q-fold degeneracy in \hat{H}_{0}, construct the $q \times q$ matrix of \hat{H}^{\prime}, which we denote H_{q}^{\prime}, in the set of $\left\{\phi_{q}^{(0)}\right\}$ degenerate eigenstates of \hat{H}_{0}.
- Diagonalize the perturbation matrix H_{q}^{\prime} by solving the corresponding secular equation.
- The q roots of H_{q}^{\prime} are the first-order energy shifts to the previously degenerate energies in \hat{H}_{0}.
- Replace the states $\left\{\phi_{q}^{(0)}\right\}$ with the states $\left\{\bar{\phi}_{q}\right\}$ which diagonalize H_{q}^{\prime} and use the resulting basis $\left\{\bar{\phi}_{1}, \bar{\phi}_{2}, \ldots, \bar{\phi}_{q}, \phi_{q+1}^{(0)}, \phi_{q+2}^{(0)}, \ldots\right\}$ in the formulas for nondegenerate perturbation theory.

Part II

The

Wentzel-Kramers-Brillouin(-Jeffreys) Approximation

WKB Approximation

$\mathrm{WKB}=$ Wentzel-Kramers-Brillouin (sometimes +J for Jeffreys) is a way to semiclassically approximate wave functions for slowly varying $V(x)$.
We write a general wave function $\psi(x)=A e^{i S(x) / \hbar}$ where A is real and $S(x)$ is a complex function.
Substituting $\psi(x)$ in the Schrödinger equation we obtain

$$
\begin{aligned}
-i \hbar \frac{\partial^{2} S(x)}{\partial x^{2}}+\left(\frac{\partial S(x)}{\partial x}\right)^{2} & =p^{2}(x) \\
p(x) & =\sqrt{2 m(E-V(x))} \equiv \hbar k(x)
\end{aligned}
$$

Now expand $S(x)$ in powers of \hbar such that

$$
S(x)=S_{0}(x)+\hbar S_{1}(x)+\frac{\hbar^{2}}{2} S_{2}(x)+\cdots
$$

WKB Approximation cont'ed

Using the series expansion of $S(x)$ we find

$$
\begin{gathered}
0=\left[\left(\frac{\partial S_{0}(x)}{\partial x}\right)^{2}-p^{2}(x)\right]+2 \hbar\left[\frac{\partial S_{0}}{\partial x} \frac{\partial S_{1}}{\partial x}-\frac{i}{2} \frac{\partial^{2} S_{0}(x)}{\partial x^{2}}\right]+ \\
\hbar^{2}\left[\frac{\partial S_{0}}{\partial x} \frac{\partial S_{2}}{\partial x}+\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{2}-i \frac{\partial^{2} S_{0}(x)}{\partial x^{2}}\right]+\mathcal{O}\left(\hbar^{3}\right)
\end{gathered}
$$

Every term of the series in \hbar must vanish, i.e.,

$$
\begin{aligned}
\left(\frac{\partial S_{0}(x)}{\partial x}\right)^{2} & =p^{2}(x) \\
\frac{\partial S_{0}}{\partial x} \frac{\partial S_{1}}{\partial x} & =\frac{i}{2} \frac{\partial^{2} S_{0}(x)}{\partial x^{2}} \\
\frac{\partial S_{0}}{\partial x} \frac{\partial S_{2}}{\partial x}+\left(\frac{\partial S_{1}(x)}{\partial x}\right)^{2} & =i \frac{\partial^{2} S_{0}(x)}{\partial x^{2}}
\end{aligned}
$$

WKB Approximation cont'ed

We can solve the equations sequentially:

$$
\begin{aligned}
& S_{0}(x)= \pm \int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime}= \pm \hbar \int_{x_{0}}^{x} k\left(x^{\prime}\right) d x^{\prime} \\
& S_{1}(x)=\frac{i}{2} \ln \left(\frac{\partial S_{0}}{\partial x}\right)=\frac{i}{2} \ln (\hbar k(x))
\end{aligned}
$$

Substituting $S_{0}+\hbar S_{1}$ in ψ and absorbing integration constants in A

$$
\begin{aligned}
& \psi(x) \approx A k^{-1 / 2}(x) \exp \left(\pm i \int^{x} k\left(x^{\prime}\right) d x^{\prime}\right) \\
& \text { for } E>V(x) \\
& \psi(x) \approx A \kappa^{-1 / 2}(x) \exp \left(\pm \int^{x} \kappa\left(x^{\prime}\right) d x^{\prime}\right) \text { for } E<V(x)
\end{aligned}
$$

where $\kappa=\sqrt{2 m(V(x)-E) / \hbar^{2}}$.

WKB Approximation - Range of Validity

Retaining lowest order terms is reasonable if $\left|\hbar S_{1} / S_{0}\right| \ll 1$. As long as k does not vanish (at classical turning points) and S_{0} increases monotonically, this implies $\left|\hbar S_{1}^{\prime} / S_{0}^{\prime}\right| \ll 1$:

$$
\left|\frac{\hbar S_{1}^{\prime}(x)}{S_{0}(x)}\right|=\left|\frac{k^{\prime}(x)}{2 k^{2}(x)}\right|=\frac{\lambda(x)}{4 \pi k(x)}\left|\frac{d k}{d x}\right| \ll 1
$$

where $\lambda=2 \pi / k$ is the local de Broglie length.
In other words, the WKB approximation is valid when $V(x)$ changes so slowly that the local momentum is constant over a few wavelengths

$$
\frac{\lambda(x)}{4 \pi}\left|\frac{d k(x)}{d x}\right| \ll k(x)
$$

WKB Approximation - Applications

- The WKB approximation breaks down near classical turning points because $k(x) \rightarrow 0$ and $\lambda \rightarrow \infty$. A boundary condition matching procedure can be performed to "patch" the wave functions in this region (refer to text for details).
- WKB is particularly useful for estimating tunneling rates and bound state energies. Since bound states imply standing waves, we require that

$$
\int_{x_{1}}^{x_{2}} k(x) d x=\int_{x_{1}}^{x_{2}} \frac{\sqrt{2 m(E-V(x))}}{\hbar} d x=n \pi+\delta \theta
$$

where x_{1}, x_{2} are the classical turning points and n is an integer.

- $\delta \theta$ is an additional phase accounting for penetration of wave function into barrier. For each "soft" barrier, i.e., $V(x)$ changes smoothly around classical turning point, $\delta \theta$ contributes a phase of $-\pi / 4$. For each "hard" barrier $(V(x) \rightarrow \infty), \delta \theta=0$. If the potential is finite on both sides of the bound state, total

Tunneling in WKB Approximation

- In classically forbidden regions $(V(x)>E)$, we can assume the form of the wave function

$$
\begin{aligned}
& \psi(x) \approx \frac{A}{\sqrt{\kappa(x)}} \exp \left(\pm \int \kappa\left(x^{\prime}\right) d x^{\prime}\right) \text { where where } \\
& \kappa(x)=\sqrt{\frac{2 m(V(x)-E)}{\hbar^{2}}}
\end{aligned}
$$

- We can estimate the tunneling probability through a classically forbidden region bounded by $\left[x_{1}, x_{2}\right]$ using

$$
T=\left|\frac{\Psi\left(x_{2}\right)}{\Psi\left(x_{1}\right)}\right|^{2} \simeq \exp \left(-2 \int_{x_{1}}^{x_{2}} \kappa(x) d x\right)
$$

- In practice this equation is very helpful for estimating tunneling in real physical systems, including semiconductor devices

Example: Computing Bound State Energy for SHO

Let $V(x)=m \omega x^{2} / 2$ and define classical turning point $x_{0}= \pm \sqrt{\frac{2 E}{m \omega^{2}}}$

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} k d x & =\int_{-x_{0}}^{x_{0}} \sqrt{\frac{2 m\left(E-m \omega x^{2} / 2\right)}{\hbar^{2}}} d x \\
& =\sqrt{\frac{2 m E}{\hbar^{2}}} \int_{-x_{0}}^{x_{0}} \sqrt{1-\frac{x^{2}}{x_{0}^{2}} d x} \\
& =\sqrt{\frac{2 m E}{\hbar^{2}}} x_{0} \int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \sin \theta d \theta \\
& =\frac{2 E}{\hbar \omega} \frac{\pi}{2}=\left(n-\frac{1}{2}\right) \pi
\end{aligned}
$$

for $n=1,2,3, \ldots$ This implies $E=\hbar \omega\left(n+\frac{1}{2}\right)$ for $n=0,1,2 \ldots$ which coincides with the exact solution for the SHO.
Most of the time WKB is not so exact, but it is often a good estimate.

Example: Fowler-Nordheim Tunneling

- Consider the triangular potential barrier

$$
V(x)=\left\{\begin{array}{lr}
V_{0}-e F x & 0 \leq x \leq \frac{V_{0}}{e F} \\
0 & \text { otherwise }
\end{array}\right.
$$

■ The tunneling probability through the barrier can be estimated in the WKB approximation (where $x_{0}=\frac{V_{0}-E}{e F}$)

$$
\begin{aligned}
T(E) & =\exp \left(-2 \int_{0}^{x_{0}} \sqrt{\frac{2 m\left(V_{0}-E-e F x\right)}{\hbar^{2}}} d x\right) \\
& =\exp \left(-2 \sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} \int_{0}^{x_{0}} \sqrt{1-x / x_{0}} d x\right) \\
& =\exp \left(-\frac{4}{3} \sqrt{\frac{2 m}{\hbar^{2}} \frac{\left(V_{0}-E\right)^{3 / 2}}{e F}}\right)
\end{aligned}
$$

